3 * \brief pmap management
5 * x86_64 specific management of page tables
7 * Warning: This code is coupled with the code in slot_alloc/. and pinned.c
9 * The maximum number of slots required to map a BASE_PAGE_SIZE
10 * sized page is the number of page table levels + 1.
11 * The sum for x86_64 is 4.
13 * Warning: Additional slots will be required to map a BASE_PAGE_SIZE size page,
14 * if we also track the actual frames that are mapped.
15 * Currently this is not the case.
19 * Copyright (c) 2009-2013 ETH Zurich.
20 * Copyright (c) 2014 HP Labs.
21 * All rights reserved.
23 * This file is distributed under the terms in the attached LICENSE file.
24 * If you do not find this file, copies can be found by writing to:
25 * ETH Zurich D-INFK, Universitaetstr. 6, CH-8092 Zurich. Attn: Systems Group.
28 #include <barrelfish/barrelfish.h>
29 #include <barrelfish/dispatch.h>
30 #include "target/x86/pmap_x86.h"
33 // Size of virtual region mapped by a single PML4 entry
34 #define PML4_MAPPING_SIZE ((genvaddr_t)512*512*512*BASE_PAGE_SIZE)
36 // Location and size of virtual address space reserved for mapping
37 // frames backing refill_slabs
38 #define META_DATA_RESERVED_BASE (PML4_MAPPING_SIZE * (disp_get_core_id() + 1))
39 #define META_DATA_RESERVED_SIZE (X86_64_BASE_PAGE_SIZE * 20000)
42 * \brief Translate generic vregion flags to architecture specific pmap flags
44 static paging_x86_64_flags_t vregion_to_pmap_flag(vregion_flags_t vregion_flags)
46 paging_x86_64_flags_t pmap_flags =
47 PTABLE_USER_SUPERVISOR | PTABLE_EXECUTE_DISABLE;
49 if (!(vregion_flags & VREGION_FLAGS_GUARD)) {
50 if (vregion_flags & VREGION_FLAGS_WRITE) {
51 pmap_flags |= PTABLE_READ_WRITE;
53 if (vregion_flags & VREGION_FLAGS_EXECUTE) {
54 pmap_flags &= ~PTABLE_EXECUTE_DISABLE;
56 if (vregion_flags & VREGION_FLAGS_NOCACHE) {
57 pmap_flags |= PTABLE_CACHE_DISABLED;
64 // returns whether va1 and va2 share a page directory entry
65 // not using X86_64_PDIR_BASE() macro as this would give false positives (same
66 // entry in different directories)
67 static inline bool is_same_pdir(genvaddr_t va1, genvaddr_t va2)
69 return (va1>>X86_64_LARGE_PAGE_BITS) == ((va2-1)>>X86_64_LARGE_PAGE_BITS);
71 // returns whether va1 and va2 share a page directory pointer table entry
72 static inline bool is_same_pdpt(genvaddr_t va1, genvaddr_t va2)
74 return (va1>>X86_64_HUGE_PAGE_BITS) == ((va2-1)>>X86_64_HUGE_PAGE_BITS);
76 // returns whether va1 and va2 share a page map level 4 entry
77 static inline bool is_same_pml4(genvaddr_t va1, genvaddr_t va2)
79 // the base macros work here as we only have one pml4.
80 return X86_64_PML4_BASE(va1) == X86_64_PML4_BASE(va2-1);
82 // size indicates how many bits to shift
83 static inline genvaddr_t get_addr_prefix(genvaddr_t va, uint8_t size)
89 * \brief Returns the vnode for the pdpt mapping a given vspace address
91 static inline errval_t get_pdpt(struct pmap_x86 *pmap, genvaddr_t base,
95 struct vnode *root = &pmap->root;
99 if((*pdpt = find_vnode(root, X86_64_PML4_BASE(base))) == NULL) {
100 err = alloc_vnode(pmap, root, ObjType_VNode_x86_64_pdpt,
101 X86_64_PML4_BASE(base), pdpt);
102 if (err_is_fail(err)) {
103 return err_push(err, LIB_ERR_PMAP_ALLOC_VNODE);
111 * \brief Returns the vnode for the page directory mapping a given vspace
114 static inline errval_t get_pdir(struct pmap_x86 *pmap, genvaddr_t base,
119 err = get_pdpt(pmap, base, &pdpt);
120 if (err_is_fail(err)) {
123 assert(pdpt != NULL);
126 if((*pdir = find_vnode(pdpt, X86_64_PDPT_BASE(base))) == NULL) {
127 err = alloc_vnode(pmap, pdpt, ObjType_VNode_x86_64_pdir,
128 X86_64_PDPT_BASE(base), pdir);
129 if (err_is_fail(err)) {
130 printf("failure mapping pdpt\n");
131 return err_push(err, LIB_ERR_PMAP_ALLOC_VNODE);
139 * \brief Returns the vnode for the pagetable mapping a given vspace address
141 static inline errval_t get_ptable(struct pmap_x86 *pmap, genvaddr_t base,
142 struct vnode **ptable)
146 err = get_pdir(pmap, base, &pdir);
147 if (err_is_fail(err)) {
150 assert(pdir != NULL);
153 if((*ptable = find_vnode(pdir, X86_64_PDIR_BASE(base))) == NULL) {
154 err = alloc_vnode(pmap, pdir, ObjType_VNode_x86_64_ptable,
155 X86_64_PDIR_BASE(base), ptable);
156 if (err_is_fail(err)) {
157 return err_push(err, LIB_ERR_PMAP_ALLOC_VNODE);
165 * \brief Returns the vnode for the page directory pointer table mapping for a
166 * given vspace address
168 static inline struct vnode *find_pdpt(struct pmap_x86 *pmap, genvaddr_t base)
170 struct vnode *root = &pmap->root;
171 assert(root != NULL);
174 return find_vnode(root, X86_64_PML4_BASE(base));
178 * \brief Returns the vnode for the page directory mapping a given vspace
179 * address, without performing allocations as get_pdir() does
181 static inline struct vnode *find_pdir(struct pmap_x86 *pmap, genvaddr_t base)
183 struct vnode *pdpt = find_pdpt(pmap, base);
187 return find_vnode(pdpt, X86_64_PDPT_BASE(base));
194 * \brief Returns the vnode for the pagetable mapping a given vspace address,
195 * without performing allocations as get_ptable() does
197 static inline struct vnode *find_ptable(struct pmap_x86 *pmap, genvaddr_t base)
199 struct vnode *pdir = find_pdir(pmap, base);
203 return find_vnode(pdir, X86_64_PDIR_BASE(base));
209 static errval_t do_single_map(struct pmap_x86 *pmap, genvaddr_t vaddr,
210 genvaddr_t vend, struct capref frame,
211 size_t offset, size_t pte_count,
212 vregion_flags_t flags)
215 paging_x86_64_flags_t pmap_flags = vregion_to_pmap_flag(flags);
217 // Get the paging structure and set paging relevant parameters
218 struct vnode *ptable;
222 // get the right paging table and address part
223 if(flags & VREGION_FLAGS_LARGE) {
224 //large 2M pages, mapped into pdir
225 err = get_pdir(pmap, vaddr, &ptable);
226 table_base = X86_64_PDIR_BASE(vaddr);
227 } else if (flags & VREGION_FLAGS_HUGE) {
228 //huge 1GB pages, mapped into pdpt
229 err = get_pdpt(pmap, vaddr, &ptable);
230 table_base = X86_64_PDPT_BASE(vaddr);
232 //normal 4K pages, mapped into ptable
233 err = get_ptable(pmap, vaddr, &ptable);
234 table_base = X86_64_PTABLE_BASE(vaddr);
236 if (err_is_fail(err)) {
237 return err_push(err, LIB_ERR_PMAP_GET_PTABLE);
239 assert(ptable->is_vnode);
241 // check if there is an overlapping mapping
242 if (has_vnode(ptable, table_base, pte_count, false)) {
243 if (has_vnode(ptable, table_base, pte_count, true)) {
244 printf("page already exists in 0x%"
245 PRIxGENVADDR"--0x%"PRIxGENVADDR"\n", vaddr, vend);
246 return LIB_ERR_PMAP_EXISTING_MAPPING;
248 // clean out empty page tables. We do this here because we benefit
249 // from having the page tables in place when doing lots of small
251 remove_empty_vnodes(pmap, ptable, table_base, pte_count);
255 // setup userspace mapping
256 struct vnode *page = slab_alloc(&pmap->slab);
258 page->is_vnode = false;
259 page->entry = table_base;
260 page->next = ptable->u.vnode.children;
261 ptable->u.vnode.children = page;
262 page->u.frame.cap = frame;
263 page->u.frame.offset = offset;
264 page->u.frame.flags = flags;
265 page->u.frame.pte_count = pte_count;
268 err = vnode_map(ptable->u.vnode.cap, frame, table_base,
269 pmap_flags, offset, pte_count);
270 if (err_is_fail(err)) {
271 return err_push(err, LIB_ERR_VNODE_MAP);
278 * \brief Called when enough slabs exist for the given mapping
280 static errval_t do_map(struct pmap_x86 *pmap, genvaddr_t vaddr,
281 struct capref frame, size_t offset, size_t size,
282 vregion_flags_t flags, size_t *retoff, size_t *retsize)
286 // determine page size and relevant address part
287 size_t page_size = X86_64_BASE_PAGE_SIZE;
288 size_t table_base = X86_64_PTABLE_BASE(vaddr);
289 uint8_t map_bits = X86_64_BASE_PAGE_BITS + X86_64_PTABLE_BITS;
290 bool debug_out = false;
291 vregion_flags_t mixed_mapping = 0;
292 if ((flags & VREGION_FLAGS_LARGE) &&
293 (vaddr & X86_64_LARGE_PAGE_MASK) == 0) {
294 // large page branch (2MB)
295 page_size = X86_64_LARGE_PAGE_SIZE;
296 table_base = X86_64_PDIR_BASE(vaddr);
297 map_bits = X86_64_LARGE_PAGE_BITS + X86_64_PTABLE_BITS;
298 if (flags & VREGION_FLAGS_HUGE) {
299 // take out huge flag from vregion flags and set mixed_mapping
301 flags &= ~VREGION_FLAGS_HUGE;
302 mixed_mapping = VREGION_FLAGS_HUGE;
305 } else if ((flags & VREGION_FLAGS_HUGE) &&
306 (vaddr & X86_64_HUGE_PAGE_MASK) == 0) {
307 // huge page branch (1GB); no mixed mappings for this configuration
308 page_size = X86_64_HUGE_PAGE_SIZE;
309 table_base = X86_64_PDPT_BASE(vaddr);
310 map_bits = X86_64_HUGE_PAGE_BITS + X86_64_PTABLE_BITS;
312 flags &= ~VREGION_FLAGS_LARGE;
313 } else if (flags & (VREGION_FLAGS_LARGE|VREGION_FLAGS_HUGE)) {
314 const char *flagstr = NULL;
315 switch (flags & (VREGION_FLAGS_LARGE|VREGION_FLAGS_HUGE)) {
316 case VREGION_FLAGS_LARGE:
317 flagstr = "VREGION_FLAGS_LARGE";
319 case VREGION_FLAGS_HUGE:
320 flagstr = "VREGION_FLAGS_HUGE";
322 case VREGION_FLAGS_HUGE|VREGION_FLAGS_LARGE:
323 flagstr = "VREGION_FLAGS_HUGE|VREGION_FLAGS_LARGE";
329 debug_printf("Treating '%s' as a hint for mixed-page-size mapping\n",
331 // take out actual large/huge flags for mixed mapping code
332 // and set mixed_mapping hint to set of large/huge flags that were
333 // present in original flags
334 mixed_mapping = flags & (VREGION_FLAGS_LARGE|VREGION_FLAGS_HUGE);
335 flags &= ~(VREGION_FLAGS_LARGE|VREGION_FLAGS_HUGE);
338 // round to the next full page
339 size = ROUND_UP(size, page_size);
340 struct frame_identity fi;
341 err = invoke_frame_identify(frame, &fi);
342 if (err_is_fail(err)) {
343 return err_push(err, LIB_ERR_PMAP_DO_MAP);
345 if (fi.base + offset + size > fi.base + (1UL<<fi.bits)) {
346 return err_push(LIB_ERR_PMAP_FRAME_SIZE, LIB_ERR_PMAP_DO_MAP);
348 // here we know that we can fit pte_count pages of size page_size into
350 size_t pte_count = DIVIDE_ROUND_UP(size, page_size);
351 genvaddr_t vend = vaddr + size;
355 genpaddr_t paddr = fi.base + offset;
357 debug_printf("do_map: 0x%"
358 PRIxGENVADDR"--0x%"PRIxGENVADDR" -> 0x%"PRIxGENPADDR
359 "; pte_count = %zd; frame bits = %zd; page size = 0x%zx\n",
360 vaddr, vend, paddr, pte_count, (size_t)fi.bits, page_size);
364 // all mapping on one leaf table?
365 // TODO: needs some work for mixed-size mappings
366 if (is_same_pdir(vaddr, vend) ||
367 (flags & VREGION_FLAGS_LARGE && is_same_pdpt(vaddr, vend)) ||
368 (flags & VREGION_FLAGS_HUGE && is_same_pml4(vaddr, vend))) {
371 debug_printf(" do_map: fast path: %zd\n", pte_count);
373 err = do_single_map(pmap, vaddr, vend, frame, offset, pte_count, flags);
374 if (err_is_fail(err)) {
375 return err_push(err, LIB_ERR_PMAP_DO_MAP);
378 else { // multiple leaf page tables
380 uint32_t c = X86_64_PTABLE_SIZE - table_base;
382 debug_printf(" do_map: slow path: first leaf %"PRIu32"\n", c);
384 genvaddr_t temp_end = vaddr + c * page_size;
385 err = do_single_map(pmap, vaddr, temp_end, frame, offset, c, flags);
386 if (err_is_fail(err)) {
387 return err_push(err, LIB_ERR_PMAP_DO_MAP);
391 while (get_addr_prefix(temp_end, map_bits) <
392 get_addr_prefix(vend, map_bits))
396 temp_end = vaddr + X86_64_PTABLE_SIZE * page_size;
397 offset += c * page_size;
398 c = X86_64_PTABLE_SIZE;
401 err = slot_alloc(&next);
402 if (err_is_fail(err)) {
403 return err_push(err, LIB_ERR_PMAP_DO_MAP);
405 err = cap_copy(next, frame);
406 if (err_is_fail(err)) {
407 return err_push(err, LIB_ERR_PMAP_DO_MAP);
413 debug_printf(" do_map: slow path: full leaf\n");
415 err = do_single_map(pmap, vaddr, temp_end, frame, offset,
416 X86_64_PTABLE_SIZE, flags);
417 if (err_is_fail(err)) {
418 return err_push(err, LIB_ERR_PMAP_DO_MAP);
422 // map remaining part
423 offset += c * page_size;
425 // calculate remaining pages (subtract ptable bits from map_bits to
426 // get #ptes of last-level instead of 2nd-to-last).
427 c = get_addr_prefix(vend, map_bits-X86_64_PTABLE_BITS) -
428 get_addr_prefix(temp_end, map_bits-X86_64_PTABLE_BITS);
433 err = slot_alloc(&next);
434 if (err_is_fail(err)) {
435 return err_push(err, LIB_ERR_PMAP_DO_MAP);
437 err = cap_copy(next, frame);
438 if (err_is_fail(err)) {
439 return err_push(err, LIB_ERR_PMAP_DO_MAP);
444 debug_printf("do_map: slow path: last leaf %"PRIu32"\n", c);
446 err = do_single_map(pmap, temp_end, vend, next, offset, c, flags);
447 if (err_is_fail(err)) {
448 return err_push(err, LIB_ERR_PMAP_DO_MAP);
462 /// Computer upper limit on number of slabs required to perform a mapping
463 static size_t max_slabs_for_mapping(size_t bytes)
465 size_t max_pages = DIVIDE_ROUND_UP(bytes, X86_64_BASE_PAGE_SIZE);
466 size_t max_ptable = DIVIDE_ROUND_UP(max_pages, X86_64_PTABLE_SIZE);
467 size_t max_pdir = DIVIDE_ROUND_UP(max_ptable, X86_64_PTABLE_SIZE);
468 size_t max_pdpt = DIVIDE_ROUND_UP(max_pdir, X86_64_PTABLE_SIZE);
469 return max_pages + max_ptable + max_pdir + max_pdpt;
472 static size_t max_slabs_for_mapping_large(size_t bytes)
474 size_t max_pages = DIVIDE_ROUND_UP(bytes, X86_64_LARGE_PAGE_SIZE);
475 size_t max_pdir = DIVIDE_ROUND_UP(max_pages, X86_64_PTABLE_SIZE);
476 size_t max_pdpt = DIVIDE_ROUND_UP(max_pdir, X86_64_PTABLE_SIZE);
477 return max_pages + max_pdir + max_pdpt;
480 static size_t max_slabs_for_mapping_huge(size_t bytes)
482 size_t max_pages = DIVIDE_ROUND_UP(bytes, X86_64_HUGE_PAGE_SIZE);
483 size_t max_pdpt = DIVIDE_ROUND_UP(max_pages, X86_64_PTABLE_SIZE);
484 return max_pages + max_pdpt;
488 * \brief Refill slabs used for metadata
490 * \param pmap The pmap to refill in
491 * \param request The number of slabs the allocator must have
492 * when the function returns
494 * When the current pmap is initialized,
495 * it reserves some virtual address space for metadata.
496 * This reserved address space is used here
498 * Can only be called for the current pmap
499 * Will recursively call into itself till it has enough slabs
501 static errval_t refill_slabs(struct pmap_x86 *pmap, size_t request)
505 /* Keep looping till we have #request slabs */
506 while (slab_freecount(&pmap->slab) < request) {
507 // Amount of bytes required for #request
508 size_t bytes = SLAB_STATIC_SIZE(request - slab_freecount(&pmap->slab),
509 sizeof(struct vnode));
511 /* Get a frame of that size */
513 err = frame_alloc(&cap, bytes, &bytes);
514 if (err_is_fail(err)) {
515 return err_push(err, LIB_ERR_FRAME_ALLOC);
518 /* If we do not have enough slabs to map the frame in, recurse */
519 size_t required_slabs_for_frame = max_slabs_for_mapping(bytes);
520 if (slab_freecount(&pmap->slab) < required_slabs_for_frame) {
521 // If we recurse, we require more slabs than to map a single page
522 assert(required_slabs_for_frame > 4);
524 err = refill_slabs(pmap, required_slabs_for_frame);
525 if (err_is_fail(err)) {
526 return err_push(err, LIB_ERR_SLAB_REFILL);
530 /* Perform mapping */
531 genvaddr_t genvaddr = pmap->vregion_offset;
532 pmap->vregion_offset += (genvaddr_t)bytes;
533 assert(pmap->vregion_offset < vregion_get_base_addr(&pmap->vregion) +
534 vregion_get_size(&pmap->vregion));
536 err = do_map(pmap, genvaddr, cap, 0, bytes,
537 VREGION_FLAGS_READ_WRITE, NULL, NULL);
538 if (err_is_fail(err)) {
539 return err_push(err, LIB_ERR_PMAP_DO_MAP);
543 lvaddr_t buf = vspace_genvaddr_to_lvaddr(genvaddr);
544 slab_grow(&pmap->slab, (void*)buf, bytes);
550 /// Minimally refill the slab allocator
551 static errval_t min_refill_slabs(struct pmap_x86 *pmap)
553 return refill_slabs(pmap, 5);
557 * \brief Create page mappings
559 * \param pmap The pmap object
560 * \param vaddr The virtual address to create the mapping for
561 * \param frame The frame cap to map in
562 * \param offset Offset into the frame cap
563 * \param size Size of the mapping
564 * \param flags Flags for the mapping
565 * \param retoff If non-NULL, filled in with adjusted offset of mapped region
566 * \param retsize If non-NULL, filled in with adjusted size of mapped region
568 static errval_t map(struct pmap *pmap, genvaddr_t vaddr, struct capref frame,
569 size_t offset, size_t size, vregion_flags_t flags,
570 size_t *retoff, size_t *retsize)
573 struct pmap_x86 *x86 = (struct pmap_x86*)pmap;
576 // Adjust the parameters to page boundaries
577 // TODO: overestimating needed slabs shouldn't hurt much in the long run,
578 // and would keep the code easier to read and possibly faster due to less
580 if (flags&VREGION_FLAGS_LARGE) {
581 //case large pages (2MB)
582 size += LARGE_PAGE_OFFSET(offset);
583 size = ROUND_UP(size, LARGE_PAGE_SIZE);
584 offset -= LARGE_PAGE_OFFSET(offset);
585 max_slabs = max_slabs_for_mapping_large(size);
586 } else if (flags&VREGION_FLAGS_HUGE) {
587 // case huge pages (1GB)
588 size += HUGE_PAGE_OFFSET(offset);
589 size = ROUND_UP(size, HUGE_PAGE_SIZE);
590 offset -= HUGE_PAGE_OFFSET(offset);
591 max_slabs = max_slabs_for_mapping_huge(size);
593 //case normal pages (4KB)
594 size += BASE_PAGE_OFFSET(offset);
595 size = ROUND_UP(size, BASE_PAGE_SIZE);
596 offset -= BASE_PAGE_OFFSET(offset);
597 max_slabs = max_slabs_for_mapping(size);
601 // Refill slab allocator if necessary
602 size_t slabs_free = slab_freecount(&x86->slab);
604 max_slabs += 5; // minimum amount required to map a page
605 if (slabs_free < max_slabs) {
606 struct pmap *mypmap = get_current_pmap();
607 if (pmap == mypmap) {
608 err = refill_slabs(x86, max_slabs);
609 if (err_is_fail(err)) {
610 return err_push(err, LIB_ERR_SLAB_REFILL);
613 size_t bytes = SLAB_STATIC_SIZE(max_slabs - slabs_free,
614 sizeof(struct vnode));
615 void *buf = malloc(bytes);
617 return LIB_ERR_MALLOC_FAIL;
619 slab_grow(&x86->slab, buf, bytes);
623 err = do_map(x86, vaddr, frame, offset, size, flags, retoff, retsize);
628 * \brief Find mapping for `vaddr` in `pmap`.
629 * \arg pmap the pmap to search in
630 * \arg vaddr the virtual address to search for
631 * \arg pt the last-level page table meta-data we found if any
632 * \arg page the page meta-data we found if any
633 * \returns `true` iff we found a mapping for vaddr
635 static bool find_mapping(struct pmap_x86 *pmap, genvaddr_t vaddr,
636 struct vnode **outpt, struct vnode **outpage)
638 struct vnode *pdpt = NULL, *pdir = NULL, *pt = NULL, *page = NULL;
640 // find page and last-level page table (can be pdir or pdpt)
641 if ((pdpt = find_pdpt(pmap, vaddr)) != NULL) {
642 page = find_vnode(pdpt, X86_64_PDPT_BASE(vaddr));
643 if (page && page->is_vnode) { // not 1G pages
645 page = find_vnode(pdir, X86_64_PDIR_BASE(vaddr));
646 if (page && page->is_vnode) { // not 2M pages
648 page = find_vnode(pt, X86_64_PTABLE_BASE(vaddr));
669 static errval_t do_single_unmap(struct pmap_x86 *pmap, genvaddr_t vaddr,
670 size_t pte_count, bool delete_cap)
673 struct vnode *pt = NULL, *page = NULL;
675 find_mapping(pmap, vaddr, &pt, &page);
677 assert(pt->is_vnode && !page->is_vnode);
680 if (page && page->u.frame.pte_count == pte_count) {
681 err = vnode_unmap(pt->u.vnode.cap, page->u.frame.cap, page->entry,
682 page->u.frame.pte_count);
683 if (err_is_fail(err)) {
684 printf("vnode_unmap returned error: %s (%d)\n",
685 err_getstring(err), err_no(err));
686 return err_push(err, LIB_ERR_VNODE_UNMAP);
689 // Free up the resources
691 err = cap_destroy(page->u.frame.cap);
692 if (err_is_fail(err)) {
693 printf("delete_cap\n");
694 return err_push(err, LIB_ERR_PMAP_DO_SINGLE_UNMAP);
697 remove_vnode(pt, page);
698 slab_free(&pmap->slab, page);
701 printf("else, pmap find\n");
702 return LIB_ERR_PMAP_FIND_VNODE;
709 static inline bool is_large_page(struct vnode *p)
711 return !p->is_vnode && p->u.frame.flags & VREGION_FLAGS_LARGE;
713 static inline bool is_huge_page(struct vnode *p)
715 return !p->is_vnode && p->u.frame.flags & VREGION_FLAGS_HUGE;
719 * \brief Remove page mappings
721 * \param pmap The pmap object
722 * \param vaddr The start of the virtual addres to remove
723 * \param size The size of virtual address to remove
724 * \param retsize If non-NULL, filled in with the actual size removed
726 static errval_t unmap(struct pmap *pmap, genvaddr_t vaddr, size_t size,
729 //printf("[unmap] 0x%"PRIxGENVADDR", %zu\n", vaddr, size);
730 errval_t err, ret = SYS_ERR_OK;
731 struct pmap_x86 *x86 = (struct pmap_x86*)pmap;
733 //determine if we unmap a larger page
734 struct vnode* page = NULL;
736 if (!find_mapping(x86, vaddr, NULL, &page)) {
737 //TODO: better error --> LIB_ERR_PMAP_NOT_MAPPED
738 return LIB_ERR_PMAP_UNMAP;
741 assert(!page->is_vnode);
743 size_t page_size = X86_64_BASE_PAGE_SIZE;
744 size_t table_base = X86_64_PTABLE_BASE(vaddr);
745 uint8_t map_bits= X86_64_BASE_PAGE_BITS + X86_64_PTABLE_BITS;
746 if (is_large_page(page)) {
748 page_size = X86_64_LARGE_PAGE_SIZE;
749 table_base = X86_64_PDIR_BASE(vaddr);
750 map_bits = X86_64_LARGE_PAGE_BITS + X86_64_PTABLE_BITS;
751 } else if (is_huge_page(page)) {
753 page_size = X86_64_HUGE_PAGE_SIZE;
754 table_base = X86_64_PDPT_BASE(vaddr);
755 map_bits = X86_64_HUGE_PAGE_BITS + X86_64_PTABLE_BITS;
758 // TODO: match new policy of map when implemented
759 size = ROUND_UP(size, page_size);
760 genvaddr_t vend = vaddr + size;
762 if (is_same_pdir(vaddr, vend) ||
763 (is_same_pdpt(vaddr, vend) && is_large_page(page)) ||
764 (is_same_pml4(vaddr, vend) && is_huge_page(page)))
767 err = do_single_unmap(x86, vaddr, size / page_size, false);
768 if (err_is_fail(err)) {
769 printf("error fast path\n");
770 return err_push(err, LIB_ERR_PMAP_UNMAP);
775 uint32_t c = X86_64_PTABLE_SIZE - table_base;
777 err = do_single_unmap(x86, vaddr, c, false);
778 if (err_is_fail(err)) {
779 printf("error first leaf\n");
780 return err_push(err, LIB_ERR_PMAP_UNMAP);
784 vaddr += c * page_size;
785 while (get_addr_prefix(vaddr, map_bits) < get_addr_prefix(vend, map_bits)) {
786 c = X86_64_PTABLE_SIZE;
787 err = do_single_unmap(x86, vaddr, X86_64_PTABLE_SIZE, true);
788 if (err_is_fail(err)) {
789 printf("error while loop\n");
790 return err_push(err, LIB_ERR_PMAP_UNMAP);
792 vaddr += c * page_size;
795 // unmap remaining part
796 // subtracting ptable bits from map_bits to get #ptes in last-level table
797 // instead of 2nd-to-last.
798 c = get_addr_prefix(vend, map_bits-X86_64_PTABLE_BITS) -
799 get_addr_prefix(vaddr, map_bits-X86_64_PTABLE_BITS);
800 assert(c < X86_64_PTABLE_SIZE);
802 err = do_single_unmap(x86, vaddr, c, true);
803 if (err_is_fail(err)) {
804 printf("error remaining part\n");
805 return err_push(err, LIB_ERR_PMAP_UNMAP);
814 //printf("[unmap] exiting\n");
818 static errval_t do_single_modify_flags(struct pmap_x86 *pmap, genvaddr_t vaddr,
819 size_t pages, vregion_flags_t flags)
821 errval_t err = SYS_ERR_OK;
822 struct vnode *ptable = find_ptable(pmap, vaddr);
823 uint16_t ptentry = X86_64_PTABLE_BASE(vaddr);
825 struct vnode *page = find_vnode(ptable, ptentry);
827 if (inside_region(ptable, ptentry, pages)) {
828 // we're modifying part of a valid mapped region
829 // arguments to invocation: invoke frame cap, first affected
830 // page (as offset from first page in mapping), #affected
831 // pages, new flags. Invocation mask flags based on capability
832 // access permissions.
833 size_t off = ptentry - page->entry;
834 paging_x86_64_flags_t pmap_flags = vregion_to_pmap_flag(flags);
835 err = invoke_frame_modify_flags(page->u.frame.cap, off, pages, pmap_flags);
836 printf("invoke_frame_modify_flags returned error: %s (%"PRIuERRV")\n",
837 err_getstring(err), err);
840 // overlaps some region border
841 return LIB_ERR_PMAP_EXISTING_MAPPING;
850 * \brief Modify page mapping
852 * \param pmap The pmap object
853 * \param vaddr The virtual address to unmap
854 * \param flags New flags for the mapping
855 * \param retsize If non-NULL, filled in with the actual size modified
857 static errval_t modify_flags(struct pmap *pmap, genvaddr_t vaddr, size_t size,
858 vregion_flags_t flags, size_t *retsize)
861 struct pmap_x86 *x86 = (struct pmap_x86 *)pmap;
862 size = ROUND_UP(size, X86_64_BASE_PAGE_SIZE);
863 size_t pages = size / X86_64_BASE_PAGE_SIZE;
864 genvaddr_t vend = vaddr + size;
866 // vaddr and vend specify begin and end of the region (inside a mapping)
867 // that should receive the new set of flags
869 // TODO: figure out page_size etc of original mapping
870 uint8_t map_bits = X86_64_BASE_PAGE_BITS + X86_64_PTABLE_BITS;
872 if (is_same_pdir(vaddr, vend)) {
874 err = do_single_modify_flags(x86, vaddr, pages, flags);
875 if (err_is_fail(err)) {
876 return err_push(err, LIB_ERR_PMAP_MODIFY_FLAGS);
881 uint32_t c = X86_64_PTABLE_SIZE - X86_64_PTABLE_BASE(vaddr);
882 err = do_single_modify_flags(x86, vaddr, c, flags);
883 if (err_is_fail(err)) {
884 return err_push(err, LIB_ERR_PMAP_MODIFY_FLAGS);
887 // modify full leaves
888 vaddr += c * X86_64_BASE_PAGE_SIZE;
889 while (get_addr_prefix(vaddr, map_bits) < get_addr_prefix(vend, map_bits)) {
890 c = X86_64_PTABLE_SIZE;
891 err = do_single_modify_flags(x86, vaddr, X86_64_PTABLE_SIZE, flags);
892 if (err_is_fail(err)) {
893 return err_push(err, LIB_ERR_PMAP_MODIFY_FLAGS);
895 vaddr += c * X86_64_BASE_PAGE_SIZE;
898 // modify remaining part
899 c = X86_64_PTABLE_BASE(vend) - X86_64_PTABLE_BASE(vaddr);
901 err = do_single_modify_flags(x86, vaddr, c, flags);
902 if (err_is_fail(err)) {
903 return err_push(err, LIB_ERR_PMAP_MODIFY_FLAGS);
912 //printf("[modify_flags] exiting\n");
917 * \brief Query existing page mapping
919 * \param pmap The pmap object
920 * \param vaddr The virtual address to query
921 * \param retvaddr Returns the base virtual address of the mapping
922 * \param retsize Returns the actual size of the mapping
923 * \param retcap Returns the cap mapped at this address
924 * \param retoffset Returns the offset within the cap that is mapped
925 * \param retflags Returns the flags for this mapping
927 * All of the ret parameters are optional.
929 static errval_t lookup(struct pmap *pmap, genvaddr_t vaddr,
930 genvaddr_t *retvaddr, size_t *retsize,
931 struct capref *retcap, genvaddr_t *retoffset,
932 vregion_flags_t *retflags)
934 struct pmap_x86 *x86 = (struct pmap_x86 *)pmap;
936 uint32_t base = X86_64_PTABLE_BASE(vaddr);
937 // Find the page table
938 struct vnode *ptable = find_ptable(x86, vaddr);
939 if (ptable == NULL) {
941 ptable = find_pdir(x86, vaddr);
942 if (ptable == NULL) {
943 return LIB_ERR_PMAP_FIND_VNODE;
945 base = X86_64_PDIR_BASE(vaddr);
949 struct vnode *vn = find_vnode(ptable, base);
951 return LIB_ERR_PMAP_FIND_VNODE;
955 *retvaddr = vaddr & ~(genvaddr_t)BASE_PAGE_MASK;
959 *retsize = BASE_PAGE_SIZE;
963 *retcap = vn->u.frame.cap;
967 *retoffset = vn->u.frame.offset;
971 *retflags = vn->u.frame.flags;
979 static errval_t dump(struct pmap *pmap, struct pmap_dump_info *buf, size_t buflen, size_t *items_written)
981 struct pmap_x86 *x86 = (struct pmap_x86 *)pmap;
982 struct pmap_dump_info *buf_ = buf;
984 struct vnode *pml4 = &x86->root;
985 struct vnode *pdpt, *pdir, *pt, *frame;
986 assert(pml4 != NULL);
990 // iterate over PML4 entries
991 size_t pml4_index, pdpt_index, pdir_index;
992 for (pdpt = pml4->u.vnode.children; pdpt != NULL; pdpt = pdpt->next) {
993 pml4_index = pdpt->entry;
994 // iterate over pdpt entries
995 for (pdir = pdpt->u.vnode.children; pdir != NULL; pdir = pdir->next) {
996 pdpt_index = pdir->entry;
997 // iterate over pdir entries
998 for (pt = pdir->u.vnode.children; pt != NULL; pt = pt->next) {
999 pdir_index = pt->entry;
1000 // iterate over pt entries
1001 for (frame = pt->u.vnode.children; frame != NULL; frame = frame->next) {
1002 if (*items_written < buflen) {
1003 buf_->pml4_index = pml4_index;
1004 buf_->pdpt_index = pdpt_index;
1005 buf_->pdir_index = pdir_index;
1006 buf_->pt_index = frame->entry;
1007 buf_->cap = frame->u.frame.cap;
1008 buf_->offset = frame->u.frame.offset;
1009 buf_->flags = frame->u.frame.flags;
1020 static errval_t determine_addr_raw(struct pmap *pmap, size_t size,
1021 size_t alignment, genvaddr_t *retvaddr)
1023 struct pmap_x86 *x86 = (struct pmap_x86 *)pmap;
1025 struct vnode *walk_pml4 = x86->root.u.vnode.children;
1026 assert(walk_pml4 != NULL); // assume there's always at least one existing entry
1028 if (alignment == 0) {
1029 alignment = BASE_PAGE_SIZE;
1031 alignment = ROUND_UP(alignment, BASE_PAGE_SIZE);
1033 size = ROUND_UP(size, alignment);
1034 assert(size < 512ul * 1024 * 1024 * 1024); // pml4 size
1036 // try to find free pml4 entry
1038 for (int i = 0; i < 512; i++) {
1041 //debug_printf("entry: %d\n", walk_pml4->entry);
1042 f[walk_pml4->entry] = false;
1044 //debug_printf("looping over pml4 entries\n");
1045 assert(walk_pml4->is_vnode);
1046 f[walk_pml4->entry] = false;
1047 walk_pml4 = walk_pml4->next;
1049 genvaddr_t first_free = 16;
1050 for (; first_free < 512; first_free++) {
1051 //debug_printf("f[%"PRIuGENVADDR"] = %d\n", first_free, f[first_free]);
1052 if (f[first_free]) {
1056 //debug_printf("first_free: %"PRIuGENVADDR"\n", first_free);
1057 if (first_free < 512) {
1058 //debug_printf("first_free: %"PRIuGENVADDR"\n", first_free);
1059 *retvaddr = first_free << 39;
1062 return LIB_ERR_OUT_OF_VIRTUAL_ADDR;
1066 static struct pmap_funcs pmap_funcs = {
1067 .determine_addr = pmap_x86_determine_addr,
1068 .determine_addr_raw = determine_addr_raw,
1072 .modify_flags = modify_flags,
1073 .serialise = pmap_x86_serialise,
1074 .deserialise = pmap_x86_deserialise,
1079 * \brief Initialize a x86 pmap object
1081 * \param pmap Pmap object of type x86
1083 errval_t pmap_x86_64_init(struct pmap *pmap, struct vspace *vspace,
1084 struct capref vnode,
1085 struct slot_allocator *opt_slot_alloc)
1087 struct pmap_x86 *x86 = (struct pmap_x86*)pmap;
1089 /* Generic portion */
1090 pmap->f = pmap_funcs;
1091 pmap->vspace = vspace;
1093 if (opt_slot_alloc != NULL) {
1094 pmap->slot_alloc = opt_slot_alloc;
1095 } else { /* use default allocator for this dispatcher */
1096 pmap->slot_alloc = get_default_slot_allocator();
1099 /* x86 specific portion */
1100 slab_init(&x86->slab, sizeof(struct vnode), NULL);
1101 slab_grow(&x86->slab, x86->slab_buffer,
1102 sizeof(x86->slab_buffer));
1103 x86->refill_slabs = min_refill_slabs;
1105 x86->root.is_vnode = true;
1106 x86->root.u.vnode.cap = vnode;
1107 x86->root.u.vnode.children = NULL;
1108 x86->root.next = NULL;
1110 // choose a minimum mappable VA for most domains; enough to catch NULL
1111 // pointer derefs with suitably large offsets
1112 x86->min_mappable_va = 64 * 1024;
1114 // maximum mappable VA is derived from X86_64_MEMORY_OFFSET in kernel
1115 x86->max_mappable_va = (genvaddr_t)0xffffff8000000000;
1121 * \brief Initialize the current pmap. Reserve space for metadata
1123 * This code is coupled with #vspace_current_init()
1125 errval_t pmap_x86_64_current_init(bool init_domain)
1127 struct pmap_x86 *x86 = (struct pmap_x86*)get_current_pmap();
1129 // To reserve a block of virtual address space,
1130 // a vregion representing the address space is required.
1131 // We construct a superficial one here and add it to the vregion list.
1132 struct vregion *vregion = &x86->vregion;
1133 vregion->vspace = NULL;
1134 vregion->memobj = NULL;
1135 vregion->base = META_DATA_RESERVED_BASE;
1136 vregion->offset = 0;
1137 vregion->size = META_DATA_RESERVED_SIZE;
1139 vregion->next = NULL;
1141 struct vspace *vspace = x86->p.vspace;
1142 assert(!vspace->head);
1143 vspace->head = vregion;
1145 x86->vregion_offset = x86->vregion.base;
1147 // We don't know the vnode layout for the first part of our address space
1148 // (which was setup by the kernel), so we avoid mapping there until told it.
1149 x86->min_mappable_va = META_DATA_RESERVED_BASE;